Structurally Diverse Diterpenoids from Sandwithia guyanensis

J Nat Prod. 2018 Apr 27;81(4):901-912. doi: 10.1021/acs.jnatprod.7b01025. Epub 2018 Mar 1.

Abstract

Bioassay-guided fractionation of an EtOAc extract of the trunk bark of Sandwithia guyanensis, using a chikungunya virus (CHIKV)-cell-based assay, afforded 17 new diterpenoids 1-17 and the known jatrointelones A and C (18 and 19). The new compounds included two tetranorditerpenoids 1 and 2, a trinorditerpenoid 3, euphoractines P-W (4-11), and euphactine G (13) possessing the rare 5/6/7/3 (4-7), 5/6/6/4 (8-11), and 5/6/8 (13) fused ring skeletons, sikkimenoid E (12), and jatrointelones J-M (14-17) possessing jatropholane and lathyrane carbon skeletons, respectively. Jatrointelones J (14) and M (17) represent the first naturally occurring examples of C-15 nonoxidized lathyrane-type diterpenoids. The structures of the new compounds were elucidated by NMR spectroscopic data analysis. The relative configuration of compound 16 and the absolute configurations of compounds 3-6 and 14 were determined by single-crystal X-ray diffraction analysis. In addition, jatrointelone K (15) was chemically transformed to euphoractine T (8) supporting the biosynthetic relationships between the two types of diterpenoids. Only compound 15 showed a moderate anti-CHIKV activity with an EC50 value of 14 μM. Finally, using a molecular networking-based dereplication strategy, several close analogues of 12- O-tetradecanoylphorbol-13-acetate (TPA), one of the most potent inhibitors of CHIKV replication, were dereplicated.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Chikungunya virus / drug effects
  • Crystallography, X-Ray / methods
  • DNA Replication / drug effects
  • Diterpenes / chemistry*
  • Diterpenes / pharmacology
  • Euphorbiaceae / chemistry*
  • Virus Replication / drug effects

Substances

  • Antiviral Agents
  • Diterpenes