Invasive predator tips the balance of symmetrical competition between native coral-reef fishes

Ecology. 2018 Apr;99(4):792-800. doi: 10.1002/ecy.2173. Epub 2018 Feb 28.

Abstract

The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in populations where competition was experimentally reduced. Thus, an invasive marine predator altered the outcome of interspecific competition via differential predation, which tipped the balance of competition between native prey species from symmetrical to asymmetrical effects on juveniles. This study reveals a newly demonstrated context in which predation can indirectly facilitate prey, further broadening our understanding of the interactive effects of predation and competition in the context of invasive species.

Keywords: coral reefs; facilitation; indirect effects; interspecific competition; invasive species; lionfish; marine fishes; predation; prey; species interactions; symmetry.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa*
  • Bahamas
  • Coral Reefs*
  • Fishes
  • Predatory Behavior