Laser wakefield acceleration with mid-IR laser pulses

Opt Lett. 2018 Mar 1;43(5):1131-1134. doi: 10.1364/OL.43.001131.

Abstract

We report on, to the best of our knowledge, the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared (IR) laser pulses (λ=3.9 μm, 100 fs, 0.25 TW), which enable near- and above-critical density interactions with moderate-density gas jets. Relativistic electron acceleration up to ∼12 MeV occurs when the jet width exceeds the threshold scale length for relativistic self-focusing. We present scaling trends in the accelerated beam profiles, charge, and spectra, which are supported by particle-in-cell simulations and time-resolved images of the interaction. For similarly scaled conditions, we observe significant increases in the accelerated charge, compared to previous experiments with near-infrared (λ=800 nm) pulses.