Fiber taper diameter characterization using forward Brillouin scattering

Opt Lett. 2018 Mar 1;43(5):995-998. doi: 10.1364/OL.43.000995.

Abstract

We propose a fast and non-destructive method to characterize the absolute diameter and uniformity of micrometer-scale fiber tapers using a pump and probe forward Brillouin scattering setup. The fundamental torsional-radial acoustic mode supported by the wire is excited using a pulsed pump laser and oscillates at a frequency that is inversely proportional to the taper waist diameter. This standing time-varying torsional-radial wave induces polarization modulation on a probe signal, whose spectrum structure reveals the sample diameter and its non-uniformity. By comparing our results with measurements using scanning-electron microscopy, a relative deviation of 1% or less was demonstrated, and diameter non-uniformity of less than 0.5% could be detected.