Efficient Synthesis of Light-Triggered Circular Antisense Oligonucleotides Targeting Cellular Protein Expression

Chembiochem. 2018 Jun 18;19(12):1250-1254. doi: 10.1002/cbic.201800012. Epub 2018 Apr 17.

Abstract

Light-activated ("caged") antisense oligonucleotides are powerful molecules for regulating gene expression at submicron spatial resolution through the focal modulation of endogenous cellular processes. Cyclized caged oligos are particularly promising structures because of their inherent stability and similarity to naturally occurring circular DNA and RNA molecules. Here, we introduce an efficient route for cyclizing an antisense oligodeoxynucleotide incorporating a photocleavable linker. Oligo cyclization was achieved for several sequences in nearly quantitative yields through intramolecular copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Caging stability and light activation were characterized by FRET efficiency, denaturing gel assay, and melting temperature measurements. Finally, a cyclized caged oligo was designed to target gfap, and it gave a tenfold reduction in glial fibrillary acidic protein upon photoactivation in astrocytes.

Keywords: antisense agents; click chemistry; light activation; oligonucleotides; photocaged compounds.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alkynes / chemical synthesis
  • Alkynes / chemistry
  • Animals
  • Astrocytes / cytology
  • Astrocytes / metabolism
  • Azides / chemical synthesis
  • Azides / chemistry
  • Base Sequence
  • Carbocyanines / chemical synthesis
  • Carbocyanines / chemistry
  • Catalysis
  • Click Chemistry / methods*
  • Copper / chemistry
  • Cyclization
  • Cycloaddition Reaction / methods
  • Gene Expression / radiation effects
  • Glial Fibrillary Acidic Protein / genetics
  • Humans
  • Oligonucleotides, Antisense / chemical synthesis*
  • Oligonucleotides, Antisense / chemistry
  • Oligonucleotides, Antisense / genetics
  • Optogenetics / methods*

Substances

  • Alkynes
  • Azides
  • Carbocyanines
  • Glial Fibrillary Acidic Protein
  • Oligonucleotides, Antisense
  • cyanine dye 3
  • cyanine dye 5
  • Copper