Characterization of extracellular vesicles derived from cardiac cells in an in vitro model of preconditioning

J Extracell Vesicles. 2017 Oct 30;6(1):1390391. doi: 10.1080/20013078.2017.1390391. eCollection 2017.

Abstract

Preconditioning is a promising technique to protect the heart from ischaemia-reperfusion injury. In this context, the crosstalk between different cardiac cell types and especially the exchange of cardioprotective mediators has come into the focus of current research. Recently, extracellular vesicles (EVs), nano-sized structures, emerged as possible communication mediators. They are taken up by recipient cells and can alter gene expression or activate intracellular signal cascades. It has been shown that all cardiac cell types are able to secrete EVs, but so far the influence of an in vitro preconditioning stimulus on EV concentration and composition has not been investigated. Therefore, we stimulated primary cardiac myocytes and fibroblasts from neonatal rats, as well as H9c2 cells, with two known in vitro preconditioning stimuli: hypoxia or isoflurane. EVs were isolated from cell culture supernatants 48 h after stimulation by differential centrifugation and size exclusion chromatography. They were characterized by transmission electron microscopy, tunable resistive pulse sensing, miRNA array and Western blot analysis. The detected EVs had the typical cup-shaped morphology and a size of about 150 nm. No significant differences in EV concentration were observed between the different groups. The protein and miRNA load was affected by in vitro preconditioning with isoflurane or hypoxia. EV markers like Alix, CD63, flotillin-1 and especially heat shock protein 70 were significantly up-regulated by the treatments. Several miRNAs like miR-92b-3p, miR-761 and miR-101a-5p were also significantly affected. A migration assay confirmed the physiological benefit of these EVs. Taken together, our findings show that a model of in vitro preconditioning of cardiac cells does not influence EV concentration but strongly regulates the EV cargo and affects migration. This might indicate a role for EV-mediated communication in isoflurane- and hypoxia-induced in vitro preconditioning.

Keywords: Extracellular vesicles; cardiac cells; cardioprotection; in vitro preconditioning; miRNA; volatile anaesthetics.

Grants and funding

This work was partly supported by the Interdisciplinary Center for Clinical Research BioMat of the RWTH Aachen, Germany.