Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize

Plant Physiol. 2018 Apr;176(4):2677-2690. doi: 10.1104/pp.17.01351. Epub 2018 Feb 23.

Abstract

Terpenoids are a major component of maize (Zea mays) chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, ENT-COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3β-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in Zman2 mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3β,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of ZmAN2 and ZmKSL4 in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens Fusarium verticillioides and Fusarium graminearum Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL-1, while trihydroxydolabrene-mediated inhibition was specific to Fverticillioides These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkyl and Aryl Transferases / genetics
  • Alkyl and Aryl Transferases / metabolism
  • Biosynthetic Pathways*
  • Disease Resistance / genetics
  • Diterpenes / chemistry
  • Diterpenes / metabolism*
  • Fusarium / classification
  • Fusarium / physiology
  • Gene Expression Regulation, Plant
  • Molecular Structure
  • Plant Diseases / genetics
  • Plant Diseases / microbiology
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Species Specificity
  • Stress, Physiological*
  • Zea mays / genetics
  • Zea mays / metabolism*
  • Zea mays / microbiology

Substances

  • Diterpenes
  • Plant Proteins
  • Alkyl and Aryl Transferases
  • terpene synthase