Fast recognition of single quantum dots from high multi-exciton emission and clustering effects

Opt Express. 2018 Feb 19;26(4):4674-4685. doi: 10.1364/OE.26.004674.

Abstract

Recognition of single quantum dots (QDs) from high multi-exciton emission and clustering effects is challenging using the conventional second-order correlation function method. Here we demonstrate a method for fast recognizing single QDs based on the probabilities of detecting single- and two-photon events. The time-tagged, time-resolved and time-correlated single-photon counting technique is applied to effectively remove multi-exciton emission and low-counting background. By this way, single QDs can be fastly recognized by the spatial coincidence-counting model. In addition, the fast recognition of single QDs by using the collected photons during the confocal scanning imaging process has been achieved synchronously.