The filamentous fungal pellet-relationship between morphology and productivity

Appl Microbiol Biotechnol. 2018 Apr;102(7):2997-3006. doi: 10.1007/s00253-018-8818-7. Epub 2018 Feb 22.

Abstract

Filamentous fungi are used for the production of a multitude of highly relevant biotechnological products like citric acid and penicillin. In submerged culture, fungi can either grow in dispersed form or as spherical pellets consisting of aggregated hyphal structures. Pellet morphology, process control and productivity are highly interlinked. On the one hand, process control in a bioreactor usually demands for compact and small pellets due to rheological issues. On the other hand, optimal productivity might be associated with less dense and larger morphology. Over the years, several publications have dealt with aforementioned relations within the confines of specific organisms and products. However, contributions which evaluate such interlinkages across several fungal species are scarce. For this purpose, we are looking into methods to manipulate fungal pellet morphology in relation to individual species and products. This review attempts to address (i) how variability of pellet morphology can be assessed and (ii) how morphology is linked to productivity. Firstly, the mechanism of pellet formation is outlined. Subsequently, the description and analysis of morphological variations are discussed to finally establish interlinkages between productivity, performance and morphology across different fungal species.

Keywords: Analysis of morphology; Fungal pellet morphology; Interlinks between productivity and morphology; Variability and alteration of morphology.

Publication types

  • Review

MeSH terms

  • Batch Cell Culture Techniques / methods*
  • Bioreactors*
  • Fungi / growth & development*
  • Industrial Microbiology / methods*
  • Rheology