Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics

J Am Chem Soc. 2018 Mar 14;140(10):3760-3767. doi: 10.1021/jacs.7b13694. Epub 2018 Feb 27.

Abstract

Structural and electronic detail at the metal-molecule interface has a significant impact on the charge transport across the molecular junctions, but its precise understanding and control still remain elusive. On the single-molecule scale, the metal-molecule interface structures and relevant charge transport properties are subject to fluctuation, which contain the fundamental science of single-molecule transport and implication for manipulability of the transport properties in electronic devices. Here, we present a comprehensive approach to investigate the fluctuation in the metal-molecule interface in single-molecule junctions, based on current-voltage ( I- V) measurements in combination with first-principles simulation. Contrary to conventional molecular conductance studies, this I- V approach provides a correlated statistical description of both the degree of electronic coupling across the metal-molecule interface and the molecular orbital energy level. This statistical approach was employed to study fluctuation in single-molecule junctions of 1,4-butanediamine (DAB), pyrazine (PY), 4,4'-bipyridine (BPY), and fullerene (C60). We demonstrate that molecular-dependent fluctuation of σ-, π-, and π-plane-type interfaces can be captured by analyzing the molecular orbital (MO) energy level under mechanical perturbation. While the MO level of DAB with the σ-type interface shows weak distance dependence and fluctuation, the MO level of PY, BPY, and C60 features unique distance dependence and molecular-dependent fluctuation against the mechanical perturbation. The MO level of PY and BPY with the σ+π-type interface increases with the increase in the stretch distance. In contrast, the MO level of C60 with the π-plane-type interface decreases with the increase in the stretching perturbation. This study provides an approach to resolve the structural and electronic fluctuation in the single-molecule junctions and insight into the molecular-dependent fluctuation in the junctions.

Publication types

  • Research Support, Non-U.S. Gov't