The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores

Angew Chem Int Ed Engl. 2018 Mar 26;57(14):3552-3577. doi: 10.1002/anie.201711605. Epub 2018 Feb 22.

Abstract

The [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction between electron-rich alkynes and electron-deficient alkenes is an efficient procedure to create nonplanar donor-acceptor (D-A) chromophores in both molecular and polymeric platforms. They feature attractive properties including intramolecular charge-transfer (ICT) bands, nonlinear optical properties, and redox activities for use in next-generation electronic and optoelectronic devices. This Review summarizes the development of the CA-RE reaction, starting from the initial reports with organometallic compounds to the extension to purely organic systems. The structural requirements for rapid, high-yielding transformations with true click chemistry character are illustrated by examples that include the broad alkyne and alkene substitution modes. The CA-RE click reaction has been successfully applied to polymer synthesis, with the resulting polymeric push-pull chromophores finding many interesting applications.

Keywords: click chemistry; cycloaddition-retroelectrocyclization cascade; optoelectronics; polymers; push-pull chromophores.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't