Luminescent and paramagnetic properties of nanoparticles shed light on their interactions with proteins

Sci Rep. 2018 Feb 21;8(1):3420. doi: 10.1038/s41598-018-21571-y.

Abstract

Nanoparticles have been recognized as promising tools for targeted drug-delivery and protein therapeutics. However, the mechanisms of protein-nanoparticle interaction and the dynamics underlying the binding process are poorly understood. Here, we present a general methodology for the characterization of protein-nanoparticle interaction on a molecular level. To this end we combined biophysical techniques including nuclear magnetic resonance (NMR), circular dichroism (CD), resonance energy transfer (RET) and surface plasmon resonance (SPR). Particularly, we analyzed molecular mechanisms and dynamics of the interaction of CaF2 nanoparticles with the prototypical calcium sensor calmodulin (CaM). We observed the transient formation of an intermediate encounter complex involving the structural region linking the two domains. Specific interaction of CaM with CaF2 NPs is driven by the N-terminal EF-hands, which seem to recognize Ca2+ on the surface of the nanoparticle. We conclude that CaF2 NP-CaM interaction is fully compatible with potential applications in nanomedicine. Overall, the methods presented in this work can be extended to other systems and may be useful to quantitatively characterize structural and dynamic features of protein-NP interactions with important implications for nanomedicine and nano-biotechnology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium Fluoride / chemistry
  • Calcium Fluoride / metabolism*
  • Calmodulin / chemistry
  • Calmodulin / metabolism*
  • Circular Dichroism
  • EF Hand Motifs
  • Humans
  • Luminescence
  • Models, Molecular
  • Nanoparticles / chemistry
  • Nanoparticles / metabolism*
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Binding
  • Protein Conformation
  • Protein Stability
  • Surface Plasmon Resonance

Substances

  • Calmodulin
  • Calcium Fluoride