Novel inhibitors of Staphylococcus aureus RnpA that synergize with mupirocin

Bioorg Med Chem Lett. 2018 Apr 1;28(6):1127-1131. doi: 10.1016/j.bmcl.2018.01.022. Epub 2018 Jan 31.

Abstract

We recently discovered RnpA as a promising new drug discovery target for methicillin-resistant S. aureus (MRSA). RnpA is an essential protein that is thought to perform two required cellular processes. As part of the RNA degrasome Rnpa mediates RNA degradation. In combination with rnpB it forms RNase P haloenzymes which are required for tRNA maturation. A high throughput screen identified RNPA2000 as an inhibitor of both RnpA-associated activities that displayed antibacterial activity against clinically relevant strains of S. aureus, including MRSA. Structure-activity studies aimed at improving potency and replacing the potentially metabotoxic furan moiety led to the identification of a number of more potent analogs. Many of these new analogs possessed overt cellular toxicity that precluded their use as antibiotics but two derivatives, including compound 5o, displayed an impressive synergy with mupirocin, an antibiotic used for decolonizing MSRA whose effectiveness has recently been jeopardized by bacterial resistance. Based on our results, compounds like 5o may ultimately find use in resensitizing mupirocin-resistant bacteria to mupirocin.

Keywords: Antibiotic; Mupirocin; RNase P; RnpA; Synergy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Methicillin-Resistant Staphylococcus aureus / enzymology
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Ribonuclease P / antagonists & inhibitors*
  • Ribonuclease P / metabolism
  • Structure-Activity Relationship

Substances

  • Anti-Bacterial Agents
  • Enzyme Inhibitors
  • Isoenzymes
  • Ribonuclease P