Augmenting Human Performance in Remotely Piloted Aircraft

Aerosp Med Hum Perform. 2018 Feb 1;89(2):115-121. doi: 10.3357/AMHP.4894.2018.

Abstract

Introduction: An experiment in a program of research supporting the sense-assess-augment (SAA) framework is described. The objective is to use physiological measures to assess operator cognitive workload in remotely piloted aircraft (RPA) operations, and provide augmentation to assist the operator in times of high workload. In previous experiments, physiological measures were identified that demonstrate sensitivity to changes in workload. The current research solely focuses on the augmentation component of the SAA paradigm. This line of research uses a realistic RPA simulation with varying levels of workload.

Methods: Recruited from the Midwest region were 12 individuals (6 women) to participate in the experiment. The subjects were trained to perform a surveillance task and a tracking task using RPAs. There was also a secondary task in which subjects were required to answer cognitive probes. A within subjects factorial design was employed with three factors per task. Subjective workload estimates were acquired using the NASA-TLX. Performance data were calculated using a composite scoring algorithm.

Results: Augmentation significantly improved performance and reduced workload in both tasks. In the surveillance task, augmentation increased performance from 573.78 to 679.04. Likewise, augmentation increased performance in the tracking task from 749.39 to 791.81. Augmentation was more beneficial in high workload conditions than low workload conditions.

Discussion: The increase in performance and decrease in workload associated with augmentation is an important and anticipated finding. This suggests that augmentation should only be provided when it is truly needed, especially if the augmentation requires additional assets and/or resources.Gruenwald CM, Middendorf MS, Hoepf MR, Galster SM. Augmenting human performance in remotely piloted aircraft. Aerosp Med Hum Perform. 2018; 89(2):115-121.

MeSH terms

  • Adult
  • Aircraft*
  • Computer Simulation
  • Female
  • Humans
  • Male
  • Man-Machine Systems
  • Perception
  • Pilots*
  • Task Performance and Analysis*
  • User-Computer Interface
  • Workload*
  • Young Adult