Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer

Chembiochem. 2018 May 4;19(9):922-926. doi: 10.1002/cbic.201800098. Epub 2018 Apr 14.

Abstract

In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration.

Keywords: density functional calculations; electron transfer; kinetics; neighboring-group effects; peptides; radical cations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / chemistry*
  • Electron Transport
  • Electrons
  • Kinetics
  • Models, Molecular
  • Peptides / chemistry*
  • Phenylalanine / chemistry*
  • Thermodynamics

Substances

  • Amides
  • Peptides
  • Phenylalanine