In vitro study on reversal of ovarian cancer cell resistance to cisplatin by naringin via the nuclear factor-κB signaling pathway

Exp Ther Med. 2018 Mar;15(3):2643-2648. doi: 10.3892/etm.2018.5695. Epub 2018 Jan 4.

Abstract

The aim of the present study was to investigate the mechanism of action by which naringin reverses the resistance of ovarian cancer cells to cisplatin. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blotting assays were used to detect the effects of different concentrations of naringin on the expressions of nuclear factor (NF)-κB and P-glycoprotein (P-gp) in the SKOV3/CDDP cell line. Small interfering RNA (siRNA) targeting NF-κB was designed and synthesized to silence NF-κB, and recombinant plasmid vectors overexpressing NF-κB were constructed to transfect cells. RT-qPCR and western blotting assays were subsequently performed to detect the effects of NF-κB on the expression of P-gp at the mRNA and protein levels. Naringin was added to the NF-κB-overexpressing SKOV3/CDDP cells and cultured for 48 h, followed by the detection of the expression of P-gp. RT-PCR and western blotting results demonstrated that the gene and protein expressions of NF-κB and P-gp were significantly decreased in a dose-dependent manner by naringin treatment (P<0.05). In cells overexpressing NF-κB, P-gp expression was significantly elevated (P<0.05), and the expression of P-gp was significantly decreased when NF-κB was silenced (P<0.05). Treatment with naringin was able to significantly ameliorate the NF-κB-induced overexpression of P-gp (P<0.05). These results indicate that naringin is able to inhibit the expression of NF-κB and P-gp in SKOV3/CDDP cells. Such an inhibitory effect may increase gradually with concentration, and is associated with blockade of the NF-κB signaling pathway. This pathway may represent one of the mechanisms of action by which Naringin reverses resistance to platinum-based agents in ovarian cancer cells.

Keywords: SKOV3/CDDP cell line; cisplatin; naringin; nuclear factor-κB signaling pathway; ovarian cancer; resistance.