Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia

Mol Cancer. 2018 Feb 19;17(1):56. doi: 10.1186/s12943-018-0805-1.

Abstract

The introduction of ABL Tyrosine Kinase Inhibitors (TKIs) has significantly improved the outcome of Chronic Myeloid Leukemia (CML) patients that, in large part, achieve satisfactory hematological, cytogenetic and molecular remissions. However, approximately 15-20% fail to obtain optimal responses according to the current European Leukemia Network recommendation because of drug intolerance or resistance.Moreover, a plethora of evidence suggests that Leukemic Stem Cells (LSCs) show BCR-ABL1-independent survival. Hence, they are unresponsive to TKIs, leading to disease relapse if pharmacological treatment is discontinued.All together, these biological events generate a subpopulation of CML patients in need of alternative therapeutic strategies to overcome TKI resistance or to eradicate LSCs in order to allow cure of the disease.In this review we update the role of "non ABL-directed inhibitors" targeting signaling pathways downstream of the BCR-ABL1 oncoprotein and describe immunological approaches activating specific T cell responses against CML cells.

Keywords: BCR-ABL1; CML; Immunological approaches; Therapeutic strategies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use*
  • Antineoplastic Combined Chemotherapy Protocols / adverse effects
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Biomarkers, Tumor*
  • Combined Modality Therapy
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / metabolism*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Molecular Targeted Therapy*
  • Signal Transduction / drug effects
  • Treatment Outcome

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor