Environmental Applications of Nano-Sized Recycled Aggregates: The Effect of Sterilization and Adsorption

J Nanosci Nanotechnol. 2018 Mar 1;18(3):2113-2116. doi: 10.1166/jnn.2018.14941.

Abstract

To evaluate the sterilize efficiency of nano-sized recycled aggregates (RAs), several types of RAs were examined for the purpose of environmental stamping out procedure. The poultry (e.g., chicken) was selected as a target livestock of epidemic disease, and the blast furnace slag (BFS), fly ash (FA), slaked lime (SL), nano-cerium (n-Ce) and shell (Sh) were used as the RAs materials. The fermented solution of effective microorganisms (EM) was added to decompose the target livestock. Various kinds of lab-scale reactor were operated to examine the effects of RAs volume; high and low volume of RAs (e.g., 1.89 w/v% and 1.14 w/v% of RA in solution, respectively), and the effects of EM concentration (e.g., concentrated solution (100%) and diluted solution (12.5%)) with tested in different reaction time. The number of microorganisms after batch tests was counted for the sterilized effects of RAs, and organic matters (e.g., chemical oxygen demand (COD)) and inorganic matters (e.g., suspended solids (SS), heavy metals and potential ions) were analyzed before and after adsorption process. The cases of SL and n-Ce showed high removal of microorganism in the batch of high concentrated EM for 20 days. However the other RA materials were less effective on the sterilization especially in lower volume of RAs. In diluted EM (e.g., 12.5%) tests, most RAs have high sterilization efficiencies in the short periods of batch reaction regardless of RAs types, and it was more effective with longer reaction time. The BFS and n-Ce exhibited higher surface area than others and they adsorbed highly heavy metals in water. The results suggested that the concentration of target organism was the most important to determine sterilization and adsorption properties of RAs.