Two Sprayer CVD Synthesis of Nitrogen-doped Carbon Sponge-type Nanomaterials

Sci Rep. 2018 Feb 14;8(1):2983. doi: 10.1038/s41598-018-20079-9.

Abstract

Nitrogen-doped carbon sponge-type nanostructures (N-CSTNs) containing coaxial multiwalled carbon nanotubes are synthesized at 1020 °C by using a modified chemical vapor deposition (CVD) arrangement. Here, the CVD reactor is supplied by two flows coming from two independent sprayers (called sprayer A and sprayer B). The nebulized material in each sprayer is transported by two different gases with different flow velocities. The synthesis of carbon N-CSTNs is performed using different precursors: sprayer A contains a solution composed of ethanol, thiophene and ferrocene, whereas sprayer B contains a solution of benzylamine, thiophene and ferrocene. Samples are classified according to the position inside the reactor and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and thermogravimetric analysis (TGA). Samples collected at the beginning of the reactor contain curly structures with diameters of 10-100 nm. At the end of the reactor, the sample is mainly formed by one type of structure. A spongy-type material is mainly formed in the hottest zone of the tubular furnace. The N-CSTNs are highly hydrophobic with oil sorption properties, which could be used for adsorption of oil spills.

Publication types

  • Research Support, Non-U.S. Gov't