Design and Characterization Methodology for Efficient Wide Range Tunable MEMS Filters

J Vis Exp. 2018 Feb 4:(132):56371. doi: 10.3791/56371.

Abstract

Here, we demonstrate the advantages of the laser Doppler vibrometer (LDV) over conventional techniques (the network analyzer), as well as the techniques to create an application-based microelectromechanical systems (MEMS) filter and how to use it efficiently (i.e., tuning the tuning-capability and avoiding both failure and stiction). LDV enables crucial measurements that are impossible with the network analyzer, such as higher mode detection (highly sensitive biosensor application) and resonance measurement for very small devices (fast prototyping). Accordingly, LDV was used to characterize the frequency tuning range and resonance frequency at different modes of the MEMS filters built for this study. This wide range frequency tuning mechanism is based simply on Joule heating from the embedded heaters and relatively high thermal stress with respect to the temperature of a fixed-fixed beam. However, we demonstrate that another limitation of this method is the resulting high thermal stress, which can burn the devices. Further improvement was achieved and shown for the first time in this study, such that the tuning capability was increased by 32% through an increase in the applied DC bias voltage (25 V to 35 V) between the two adjacent beams. This important finding eliminates the need for the extra Joule heating at the wider frequency tuning range. Another possible failure is through stiction and requirement of structure optimization: We propose a simple and easy technique of low frequency square wave signal application that can successfully separate the beams and eliminates the need for the more sophisticated and complicated methods given in the literature. The above findings necessitate a design methodology, and so we also provide an application-based design.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Micro-Electrical-Mechanical Systems / instrumentation
  • Micro-Electrical-Mechanical Systems / methods*