A Paired Bead and Magnet Array for Molding Microwells with Variable Concave Geometries

J Vis Exp. 2018 Jan 28:(131):55548. doi: 10.3791/55548.

Abstract

A spheroid culture is a useful tool for understanding cellular behavior in that it provides an in vivo-like three-dimensional environment. Various spheroid production methods such as non-adhesive surfaces, spinner flasks, hanging drops, and microwells have been used in studies of cell-to-cell interaction, immune-activation, drug screening, stem cell differentiation, and organoid generation. Among these methods, microwells with a three-dimensional concave geometry have gained the attention of scientists and engineers, given their advantages of uniform-sized spheroid generation and the ease with which the responses of individual spheroids can be monitored. Even though cost-effective methods such as the use of flexible membranes and ice lithography have been proposed, these techniques incur serious drawbacks such as difficulty in controlling the pattern sizes, achievement of high aspect ratios, and production of larger areas of microwells. To overcome these problems, we propose a robust method for fabricating concave microwells without the need for complex high-cost facilities. This method utilizes a 30 x 30 through-hole array, several hundred micrometer-order steel beads, and magnetic force to fabricate 900 microwells in a 3 cm x 3 cm polydimethylsiloxane (PDMS) substrate. To demonstrate the applicability of our method to cell biological applications, we cultured adipose stem cells for 3 days and successfully produced spheroids using our microwell platform. In addition, we performed a magnetostatic simulation to investigate the mechanism, whereby magnetic force was used to trap the steel beads in the through-holes. We believe that the proposed microwell fabrication method could be applied to many spheroid-based cellular studies such as drug screening, tissue regeneration, stem cell differentiation, and cancer metastasis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Cell Culture Techniques / methods*
  • Humans
  • Magnets / chemistry*
  • Spheroids, Cellular / chemistry*