Hyaluronic acid-grafted PLGA nanoparticles for the sustained delivery of berberine chloride for an efficient suppression of Ehrlich ascites tumors

Drug Deliv Transl Res. 2018 Jun;8(3):565-579. doi: 10.1007/s13346-018-0485-9.

Abstract

To promote the specific targeting and elimination of CD44-positive cancer cells, berberine chloride (BRB)-encapsulated hyaluronic acid-grafted poly(lactic-co-glycolic acid) copolymer (BRB-d(HA)-g-PLGA) nanoparticles (NPs) were prepared. The targeted action of these NPs was compared to non-targeted BRB-loaded PLGA NPs and bulk BRB. The in vitro studies demonstrated faster release of BRB and increased cytotoxicity of BRB-d(HA)-g-PLGA NPs in Hela and MCF-7 cells in comparison to BRB-PLGA NPs and bulk BRB. The uptake of BRB-d(HA)-g-PLGA NPs was increased in case of MCF-7 cells as compared to HeLa cells owing to the higher expression of CD44 receptors on MCF-7 cells. The CD44 receptor-mediated uptake of these NPs was confirmed through competitive inhibition experiments. The in vitro results were further validated in vivo in Ehrlich Ascites Carcinoma (EAC)-bearing mice. EAC-bearing mice were injected intravenously with these NPs and the results obtained were compared with that of BRB-PLGA NPs and bulk BRB. BRB-d(HA)-g-PLGA NPs were found to significantly enhance apoptosis, sub-G1 content, life span, mean survival time, and ROS levels in EAC cells with subsequent decrease in mitochondrial membrane potential and tumor burden ion tumor-bearing mice. Taking into account the findings of in vitro and in vivo studies, the enhanced and targeted anti-tumor activity of HA-grafted PLGA copolymer-encapsulated NPs of BRB cannot be negated. Therefore, HA-grafted nanoparticle-based delivery of BRB may offer a promising and improved alternative for anti-tumor therapy.

Keywords: Berberine; Ehrlich ascites tumor; Nanotechnology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / chemistry
  • Apoptosis / drug effects
  • Berberine / administration & dosage*
  • Berberine / chemistry
  • Carcinoma, Ehrlich Tumor / drug therapy*
  • Cell Line
  • Cell Survival / drug effects
  • Delayed-Action Preparations / administration & dosage
  • Delayed-Action Preparations / chemistry
  • Drug Liberation
  • Endocytosis
  • HeLa Cells
  • Humans
  • Hyaluronan Receptors / metabolism
  • Hyaluronic Acid / administration & dosage*
  • Hyaluronic Acid / chemistry
  • Lactic Acid / administration & dosage*
  • Lactic Acid / chemistry
  • MCF-7 Cells
  • Male
  • Mice
  • Nanoparticles / administration & dosage*
  • Nanoparticles / chemistry
  • Polyglycolic Acid / administration & dosage*
  • Polyglycolic Acid / chemistry
  • Polylactic Acid-Polyglycolic Acid Copolymer

Substances

  • Antineoplastic Agents
  • CD44 protein, human
  • Delayed-Action Preparations
  • Hyaluronan Receptors
  • Berberine
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Hyaluronic Acid