Synthesis and characterization of electrospun molybdenum dioxide-carbon nanofibers as sulfur matrix additives for rechargeable lithium-sulfur battery applications

Beilstein J Nanotechnol. 2018 Jan 24:9:262-270. doi: 10.3762/bjnano.9.28. eCollection 2018.

Abstract

One-dimensional molybdenum dioxide-carbon nanofibers (MoO2-CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). MoO2-CNFs with an average diameter of 425-575 nm obtained after heat treatment were used as a matrix to prepare sulfur/MoO2-CNF cathodes for lithium-sulfur (Li-S) batteries. The polysulfide adsorption and electrochemical performance tests demonstrated that MoO2-CNFs did not only act as polysulfide reservoirs to alleviate the shuttle effect, but also improve the electrochemical reaction kinetics during the charge-discharge processes. The effect of MoO2-CNF heat treatment on the cycle performance of sulfur/MoO2-CNFs electrodes was examined, and the data showed that MoO2-CNFs calcined at 850 °C delivered optimal performance with an initial capacity of 1095 mAh g-1 and 860 mAh g-1 after 50 cycles. The results demonstrated that sulfur/MoO2-CNF composites display a remarkably high lithium-ion diffusion coefficient, low interfacial resistance and much better electrochemical performance than pristine sulfur cathodes.

Keywords: MoO2–CNFs; electrochemical performance; electrospinning; lithium–sulfur batteries; sulfur matrix.