Obesity and High-Fat Diet Induce Distinct Changes in Placental Gene Expression and Pregnancy Outcome

Endocrinology. 2018 Apr 1;159(4):1718-1733. doi: 10.1210/en.2017-03053.

Abstract

Obese women are at high risk of pregnancy complications, including preeclampsia, miscarriage, preterm birth, stillbirth, and neonatal death. In the current study, we aimed to determine the effects of obesity on pregnancy outcome and placental gene expression in preclinical mouse models of genetic and nutritional obesity. The leptin receptor (LepR) null-reactivatable (LepRloxTB), LepR-deficient (Leprdb/+), and high-fat diet (HFD)-fed mice were assessed for fertility, pregnancy outcome, placental morphology, and placental transcriptome using standard quantitative polymerase chain reaction (qPCR) and qPCR arrays. The restoration of fertility of LepRloxTB was performed by stereotaxic delivery of adeno-associated virus-Cre into the hypothalamic ventral premammillary nucleus. Fertile LepRloxTB females were morbidly obese, whereas the wild-type mice-fed HFD showed only a mild increase in body weight. Approximately 80% of the LepRloxTB females had embryo resorptions (∼40% of the embryos). In HFD mice, the number of resorptions was not different from controls fed a regular diet. Placentas of resorbed embryos from obese mice displayed necrosis and inflammatory infiltrate in the labyrinth and changes in the expression of genes associated with angiogenesis and inflammation (e.g., Vegfa, Hif1a, Nfkbia, Tlr3, Tlr4). In contrast, placentas from embryos of females on HFD showed changes in a different set of genes, mostly associated with cellular growth and response to stress (e.g., Plg, Ang, Igf1, Igfbp1, Fgf2, Tgfb2, Serpinf1). Sexual dimorphism in gene expression was only apparent in placentas from obese LepRloxTB mice. Our findings indicate that an obese environment and HFD have distinct effects on pregnancy outcome and the placental transcriptome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diet, High-Fat*
  • Female
  • Gene Expression Regulation*
  • Hypothalamus / metabolism
  • Inflammation / genetics
  • Inflammation / metabolism
  • Leptin / metabolism
  • Mice
  • Mice, Transgenic
  • Neovascularization, Pathologic / genetics
  • Neovascularization, Pathologic / metabolism
  • Obesity / genetics*
  • Obesity / metabolism
  • Placenta / metabolism*
  • Pregnancy
  • Pregnancy Outcome
  • Receptors, Leptin / genetics*
  • Receptors, Leptin / metabolism

Substances

  • Leptin
  • Receptors, Leptin