How oxygen gave rise to eukaryotic sex

Proc Biol Sci. 2018 Feb 14;285(1872):20172706. doi: 10.1098/rspb.2017.2706.

Abstract

How did full meiotic eukaryotic sex evolve and what was the immediate advantage allowing it to develop? We propose that the crucial determinant can be found in internal reactive oxygen species (ROS) formation at the start of eukaryotic evolution approximately 2 × 109 years ago. The large amount of ROS coming from a bacterial endosymbiont gave rise to DNA damage and vast increases in host genome mutation rates. Eukaryogenesis and chromosome evolution represent adaptations to oxidative stress. The host, an archaeon, most probably already had repair mechanisms based on DNA pairing and recombination, and possibly some kind of primitive cell fusion mechanism. The detrimental effects of internal ROS formation on host genome integrity set the stage allowing evolution of meiotic sex from these humble beginnings. Basic meiotic mechanisms thus probably evolved in response to endogenous ROS production by the 'pre-mitochondrion'. This alternative to mitosis is crucial under novel, ROS-producing stress situations, like extensive motility or phagotrophy in heterotrophs and endosymbiontic photosynthesis in autotrophs. In multicellular eukaryotes with a germline-soma differentiation, meiotic sex with diploid-haploid cycles improved efficient purging of deleterious mutations. Constant pressure of endogenous ROS explains the ubiquitous maintenance of meiotic sex in practically all eukaryotic kingdoms. Here, we discuss the relevant observations underpinning this model.

Keywords: Muller's ratchet; eukaryotes; meiosis; oxidative stress; paradox of sex.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biological Evolution*
  • Eukaryota / physiology*
  • Oxygen / metabolism*
  • Reactive Oxygen Species / metabolism
  • Sex*
  • Symbiosis / physiology

Substances

  • Reactive Oxygen Species
  • Oxygen

Associated data

  • figshare/10.6084/m9.figshare.c.3969282