Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau

Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1865-1870. doi: 10.1073/pnas.1720487115. Epub 2018 Feb 5.

Abstract

When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.

Keywords: biochemical adaptation; convergence; hemoglobin; hypoxia; mutation bias.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / genetics*
  • Altitude*
  • Animal Distribution
  • Animals
  • Evolution, Molecular
  • Hemoglobins / genetics
  • Hemoglobins / physiology*
  • Models, Molecular
  • Passeriformes / blood
  • Passeriformes / genetics*
  • Passeriformes / physiology*
  • Protein Conformation
  • Protein Isoforms
  • Tibet

Substances

  • Hemoglobins
  • Protein Isoforms

Associated data

  • GENBANK/MG772099
  • GENBANK/MG772439