MELK is a novel therapeutic target in high-risk neuroblastoma

Oncotarget. 2017 Dec 20;9(2):2591-2602. doi: 10.18632/oncotarget.23515. eCollection 2018 Jan 5.

Abstract

Maternal embryonic leucine zipper kinase (MELK) is known to modulate intracellular signaling and control cellular processes. However, the role of MELK in oncogenesis is not well defined. In this study, using two microarray datasets of neuroblastoma (NB) patients, we identified that MELK expression is significantly correlated to poor overall survival, unfavorable prognosis, and high-risk status. We found that MELK is a direct transcription target of MYCN and MYC in NB, and MYCN increases MELK expression via direct promoter binding. Interestingly, knockdown of MELK expression significantly reduced the phosphorylation of target protein Retinoblastoma (pRb) and inhibited NB cell growth. Furthermore, pharmacological inhibition of MELK activity by small-molecule inhibitor OTSSP167 significantly inhibited cell proliferation, anchorage-independent colony formation, blocked cell cycle progression, and induced apoptosis in different NB cell lines including a drug-resistant cell line. Additionally, OTSSP167 suppressed NB tumor growth in an orthotopic xenograft mouse model. Overall, our data suggest that MELK is a novel therapeutic target for NB and its inhibitor OTSSP167 is a promising drug for further clinical development.

Keywords: MELK; MYCN/MYC; OTSSP167; chemotherapy; neuroblastoma.