Perforin proteostasis is regulated through its C2 domain: supra-physiological cell death mediated by T431D-perforin

Cell Death Differ. 2018 Aug;25(8):1517-1529. doi: 10.1038/s41418-018-0057-z. Epub 2018 Feb 7.

Abstract

The pore forming, Ca2+-dependent protein, perforin, is essential for the function of cytotoxic lymphocytes, which are at the frontline of immune defence against pathogens and cancer. Perforin is a glycoprotein stored in the secretory granules prior to release into the immune synapse. Congenital perforin deficiency causes fatal immune dysregulation, and is associated with various haematological malignancies. At least 50% of pathological missense mutations in perforin result in protein misfolding and retention in the endoplasmic reticulum. However, the regulation of perforin proteostasis remains unexplored. Using a variety of biochemical assays that assess protein stability and acquisition of complex glycosylation, we demonstrated that the binding of Ca2+ to the C2 domain stabilises perforin and regulates its export from the endoplasmic reticulum to the secretory granules. As perforin is a thermo-labile protein, we hypothesised that by altering its C2 domain it may be possible to improve protein stability. On the basis of the X-ray crystal structure of the perforin C2 domain, we designed a mutation (T431D) in the Ca2+ binding loop. Mutant perforin displayed markedly enhanced thermal stability and lytic function, despite its trafficking from the endoplasmic reticulum remaining unchanged. Furthermore, by introducing the T431D mutation into A90V perforin, a pathogenic mutation, which results in protein misfolding, we corrected the A90V folding defect and completely restored perforin's cytotoxic function. These results revealed an unexpected role for the Ca2+-dependent C2 domain in maintaining perforin proteostasis and demonstrated the possibility of designing perforin with supra-physiological cytotoxic function through stabilisation of the C2 domain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis*
  • Calcium / chemistry
  • Calcium / metabolism
  • Cell Line, Tumor
  • Crystallography, X-Ray
  • Endoplasmic Reticulum / metabolism
  • Mice
  • Mutagenesis, Site-Directed
  • Perforin / genetics
  • Perforin / metabolism*
  • Protein Domains
  • Protein Folding
  • Protein Stability
  • Protein Structure, Tertiary
  • Protein Transport
  • Rats
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Transition Temperature

Substances

  • Recombinant Proteins
  • Perforin
  • Calcium