Regulation and bioactivity of the CCN family of genes and proteins in obesity and diabetes

J Cell Commun Signal. 2018 Mar;12(1):359-368. doi: 10.1007/s12079-018-0458-2. Epub 2018 Feb 6.

Abstract

Across the years the CCNs have been increasingly implicated in the development of obesity, diabetes and its complications. Evidence for this is currently derived from their dysregulation in key metabolic pathological states in humans, animal and in vitro models, and also pre-clinical effects of their bioactivities. CCN2 is the best studied in this disease process and the other CCNs are yet to be better defined. Key steps where CCNs may play a pathogenic metabolic role include: (i) obesity and insulin resistance, where CCN2 inhibits fat cell differentiation in vitro and CCN3 may induce obesity and insulin resistance; (ii) elevated blood glucose levels to diabetes mellitus onset, where CCN2 may contribute to pancreatic beta cell and islet function; and (iii) in diabetes complications, such as nephropathy, retinopathy, liver disease (NAFLD/NASH), CVD and diabetes with heart failure. In contrast, CCN1, CCN2 and possibly CCN3, may have a reparative role in wound healing in diabetes, and CCN2 in islet cell development. In terms of CCN2 regulation by a diabetes metabolic environment and related mechanisms, the author's laboratory and others have progressively shown that advanced glycation-end products, protein kinase C isoforms, saturated fatty acids, reactive oxygen species and haemodynamic factors upregulate CCN2 in relevant cell and animal systems. Recent data has suggested that CCN2, CCN3 and CCN6 may affect energy homeostasis including in regulating glycolysis and mitochondrial function. This paper will address the current data implicating CCNs in diabetes and its complications, focusing on recent aspects with translational clinical relevance and future directions.

Keywords: CCNs; Complications; Diabetes; Insulin resistance; Obesity.

Publication types

  • Review