Beyond regulation of pol III: Role of MAF1 in growth, metabolism, aging and cancer

Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):338-343. doi: 10.1016/j.bbagrm.2018.01.019. Epub 2018 Jan 31.

Abstract

MAF1 was discovered as a master repressor of Pol III-dependent transcription in response to diverse extracellular signals, including growth factor, nutrient and stress. It is regulated through posttranslational mechanisms such as phosphorylation. A prominent upstream regulator of MAF1 is the mechanistic target of rapamycin (mTOR) pathway. mTOR kinase directly phosphorylates MAF1, controlling its localization and transcriptional activity. In mammals, MAF1 has also been shown to regulate Pol I- and Pol II-dependent transcription. Interestingly, MAF1 modulates Pol II activity both as a repressor and activator, depending on specific target genes, to impact on cellular growth and metabolism. While MAF1 represses genes such as TATA-binding protein (TBP) and fatty acid synthase (FASN), it activates the expression of PTEN, a major tumor suppressor and an inhibitor of the mTOR signaling. Increasing evidence indicates that MAF1 plays an important role in different aspects of normal physiology, lifespan and oncogenesis. Here we will review the current knowledge on MAF1 in growth, metabolism, aging and cancer. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / metabolism*
  • Animals
  • Growth / physiology*
  • Humans
  • MafB Transcription Factor / physiology*
  • Metabolic Networks and Pathways
  • Models, Biological
  • Neoplasms / metabolism*
  • Protein Domains
  • Protein Processing, Post-Translational
  • RNA Polymerase III / metabolism
  • Signal Transduction
  • TOR Serine-Threonine Kinases / physiology

Substances

  • MafB Transcription Factor
  • TOR Serine-Threonine Kinases
  • RNA Polymerase III