Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice

Opt Express. 2018 Jan 22;26(2):1199-1205. doi: 10.1364/OE.26.001199.

Abstract

Asymmetric transmission (AT) holds significant applications in controlling polarization and propagation directions of electromagnetic waves. In this paper, tilted rectangular nanohole (TRNH) arrays in a square lattice are proposed to realize an AT effect. Numerical results show two AT modes in the transmission spectrum, and they are ascribed to the localized surface plasmon resonances around the two ends of TRNH and surface plasmon polaritons on the golden film. AT properties of the TRNH strongly depend on structural parameters, such as width, length, thickness, and tilted angle of TRNH. Results provide a novel mechanism for generating AT effect and offer potential plasmonic device applications, such as asymmetric wave splitters and optical isolators.