Enhanced asymmetric transmissions attributed to the cavity coupling hybrid resonance in a continuous omega-shaped metamaterial

Opt Express. 2018 Feb 5;26(3):3508-3517. doi: 10.1364/OE.26.003508.

Abstract

In this paper, the infinite-length metallic bar is folded to a continuous omega-shaped resonator and then arranged as a bi-layer metamaterial, which presents a hybrid resonance and a Fabry-Perot-like cavity mode. The asymmetric transmission (AT) for linearly polarized light is powerfully enhanced at a near-infrared regime by strongly coupling the hybrid resonance to the cavity, with the maximum value of the high-efficiency AT effect reaching 0.8 at around 1364 nm. At this near-infrared band, such a high-efficiency AT effect has never been realized previously by a bi-layer metamaterial. More importantly, we demonstrate that our design is robust to the misalignments, which greatly decreases the difficulties in sample fabrications. Accordingly, the proposed omega-shaped metamaterial provides potential applications in designing polarization filters, polarization switches, and other nano-devices.