Dual-view-zone tabletop 3D display system based on integral imaging

Appl Opt. 2018 Feb 1;57(4):952-958. doi: 10.1364/AO.57.000952.

Abstract

In this paper, we propose a dual-view-zone tabletop 3D display system based on integral imaging by using a multiplexed holographic optical element (MHOE) that has the optical properties of two sets of microlens arrays. The MHOE is recorded by a reference beam using the single-exposure method. The reference beam records the wavefronts of a microlens array from two different directions. Thus, when the display beam is projected on the MHOE, two wavefronts with the different directions will be rebuilt and the 3D virtual images can be reconstructed in two viewing zones. The MHOE has angle and wavelength selectivity. Under the conditions of the matched wavelength and the angle of the display beam, the diffraction efficiency of the MHOE is greatest. Because the unmatched light just passes through the MHOE, the MHOE has the advantage of a see-through display. The experimental results confirm the feasibility of the dual-view-zone tabletop 3D display system.