No-reference high-dynamic-range image quality assessment based on tensor decomposition and manifold learning

Appl Opt. 2018 Feb 1;57(4):839-848. doi: 10.1364/AO.57.000839.

Abstract

The practical applications of the full-reference image quality assessment (IQA) method are limited. Here, we propose a new no-reference quality assessment method for high-dynamic-range (HDR) images. First, tensor decomposition is used to generate three feature maps of an HDR image, considering color and structure information of the HDR image. Second, for a given HDR image, because its first feature map contains its main energy and important structural feature information, manifold learning is used in the first feature map to find the inherent geometric structure of high-dimensional data in a low-dimensional manifold. In addition, the corresponding multi-scale manifold structure features are extracted from the first feature map. For the second and third feature maps of the HDR image, multi-scale contrast features are extracted, as they reflect the perceived detail contrast information of the HDR image. Finally, the extracted features are aggregated by support vector regression to obtain the objective quality prediction score of the HDR image. Experimental results show that the proposed method is superior to some representative full- and no-reference methods, and even superior to the full-reference HDR IQA method, HDR-VDP-2.2, on the Nantes database. The proposed method has a higher consistency with human visual perception.