Propagules are not all equal: traits of vegetative fragments and disturbance regulate invasion success

Ecology. 2018 Apr;99(4):957-965. doi: 10.1002/ecy.2168. Epub 2018 Mar 25.

Abstract

Invasion success is regulated by multiple factors. While the roles of disturbance and propagule pressure in regulating the establishment of non-native species are widely acknowledged, that of propagule morphology (a proxy for quality) is poorly known. By means of a multi-factorial field experiment, we tested how the number (5 vs. 10) and quality (intact, without fronds or without rhizoids) of fragments of the clonal invasive seaweed, Caulerpa cylindracea, influenced its ability to establish in patches of the native seagrass, Posidonia oceanica, exposed to different intensities of disturbance (0, 50, or 100% reduction in canopy cover). We hypothesized that the ability of fragments to establish would be greater for intact fragments (high quality) and reduced more by frond removal (low quality) than rhizoid removal (intermediate quality). At low propagule pressure or quality, fragment establishment was predicted to increase with increasing disturbance, whereas, at high propagule pressure or quality, it was predicted to be high regardless of disturbance intensity. Disturbance intensity, fragment number and quality had independent effects on C. cylindracea establishment success. Disturbance always facilitated fragment establishment. However, fragments retaining fronds, either intact or deprived of rhizoids, had higher establishment success than fragments deprived of fronds. Increasing propagule number had weak effects on the cover of C. cylindracea. Our results demonstrate that propagule traits enabling the acquisition of resources made available by disturbance can be more important than propagule number in determining the establishment and spread of clonal non-native plants. More generally, our study suggests that propagule quality is a key, yet underexplored, determinant of invasion success.

Keywords: Caulerpa cylindracea; biological invasion; biotic resistance; clonal seaweeds; disturbance; propagule pressure; propagule quality.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem
  • Introduced Species*
  • Plants
  • Seaweed*