Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition

Nanoscale. 2018 Feb 15;10(7):3356-3361. doi: 10.1039/c7nr06642b.

Abstract

Herein, we report a systematic study of water contact angle (WCA) of rare-earth oxide thin-films. These ultra-smooth and epitaxial thin-films were grown using pulsed laser deposition and then characterized using X-Ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), and atomic force microscopy (AFM). Through both the traditional sessile drop and the novel f-d method, we found that the films were intrinsically hydrophilic (WCA < 10°) just after being removed from the growth chamber, but their WCAs evolved with an exposure to the atmosphere with time to reach their eventual saturation values near 90° (but always stay 'technically' hydrophilic). X-Ray photoelectron spectroscopy analysis was used to further investigate qualitatively the nature of hydrocarbon contamination on the freshly prepared as well as the environmentally exposed REO thin-film samples as a function of the exposure time after they were removed from the deposition chamber. A clear correlation between the carbon coverage of the surface and the increase in WCA was observed for all of the rare-earth films, indicating the extrinsic nature of the surface wetting properties of these films and having no relation to the electronic configuration of the rare-earth atoms as proposed by Azimi et al.