Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02

Appl Biochem Biotechnol. 2018 Aug;185(4):958-970. doi: 10.1007/s12010-018-2693-7. Epub 2018 Feb 1.

Abstract

Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.

Keywords: ATP supply; Bacillus licheniformis; Fnr; Nitrate metabolism; Poly-γ-glutamic acid.

MeSH terms

  • Anaerobiosis / genetics
  • Bacillus licheniformis / genetics
  • Bacillus licheniformis / metabolism*
  • Bacterial Proteins / biosynthesis*
  • Bacterial Proteins / genetics
  • Glyceric Acids / metabolism*
  • Iron-Sulfur Proteins / biosynthesis*
  • Iron-Sulfur Proteins / genetics

Substances

  • Bacterial Proteins
  • Glyceric Acids
  • Iron-Sulfur Proteins
  • polyglyceric acid