Organelle luminal dependence of (+)strand RNA virus replication reveals a hidden druggable target

Sci Adv. 2018 Jan 24;4(1):eaap8258. doi: 10.1126/sciadv.aap8258. eCollection 2018 Jan.

Abstract

Positive-strand RNA viruses replicate their genomes in membrane-bounded cytoplasmic complexes. We show that endoplasmic reticulum (ER)-linked genomic RNA replication by brome mosaic virus (BMV), a well-studied member of the alphavirus superfamily, depends on the ER luminal thiol oxidase ERO1. We further show that BMV RNA replication protein 1a, a key protein for the formation and function of vesicular BMV RNA replication compartments on ER membranes, permeabilizes these membranes to release oxidizing potential from the ER lumen. Conserved amphipathic sequences in 1a are sufficient to permeabilize liposomes, and mutations in these sequences simultaneously block membrane permeabilization, formation of a disulfide-linked, oxidized 1a multimer, 1a's RNA capping function, and productive genome replication. These results reveal new transmembrane complexities in positive-strand RNA virus replication, show that-as previously reported for certain picornaviruses and flaviviruses-some alphavirus superfamily members encode viroporins, identify roles for such viroporins in genome replication, and provide a potential new foundation for broad-spectrum antivirals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / pharmacology*
  • Bromovirus / drug effects
  • Bromovirus / physiology
  • Disulfides / metabolism
  • Endoplasmic Reticulum / drug effects
  • Endoplasmic Reticulum / metabolism
  • Intracellular Membranes / drug effects
  • Intracellular Membranes / virology
  • Organelles / drug effects
  • Organelles / virology*
  • Permeability
  • RNA Viruses / drug effects
  • RNA Viruses / physiology*
  • Virus Replication* / drug effects

Substances

  • Antiviral Agents
  • Disulfides