Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization

ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6207-6217. doi: 10.1021/acsami.7b14609. Epub 2018 Feb 12.

Abstract

In capacitive deionization, the salt-adsorption capacity of the electrode is critical for the efficient softening of brackish water. To improve the water-deionization capacity, the carbon electrode surface is modified with ion-exchange resins. Herein, we introduce the encapsulation of zwitterionic polymers over activated carbon to provide a resistant barrier that stabilizes the structure of electrode during electrochemical performance and enhances the capacitive deionization efficiency. Compared to conventional activated carbon, the surface-modified activated carbon exhibits significantly enhanced capacitive deionization, with a salt adsorption capacity of ∼2.0 × 10-4 mg/mL and a minimum conductivity of ∼43 μS/cm in the alkali-metal ions solution. Encapsulating the activated-carbon surface increased the number of ions adsorption sites and the surface area of the electrode, which improved the charge separation and deionization efficiency. In addition, the coating layer suppresses side reactions between the electrode and electrolyte, thus providing a stable cyclability. Our experimental findings suggest that the well-distributed coating layer leads to a synergistic effect on the enhanced electrochemical performance. In addition, density functional theory calculation reveals that a favorable binding affinity exists between the alkali-metal ion and zwitterionic polymer, which supports the preferable salt ions adsorption on the coating layer. The results provide useful information for designing more efficient capacitive-deionization electrodes that require high electrochemical stability.

Keywords: capacitive deionization; density functional theory; minimum conductivity; surface modification; zwitterionic polymer.