Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors

ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6624-6635. doi: 10.1021/acsami.7b18677. Epub 2018 Feb 12.

Abstract

Lightweight, stretchable, and wearable strain sensors have recently been widely studied for the development of health monitoring systems, human-machine interfaces, and wearable devices. Herein, highly stretchable polymer elastomer-wrapped carbon nanocomposite piezoresistive core-sheath fibers are successfully prepared using a facile and scalable one-step coaxial wet-spinning assembly approach. The carbon nanotube-polymeric composite core of the stretchable fiber is surrounded by an insulating sheath, similar to conventional cables, and shows excellent electrical conductivity with a low percolation threshold (0.74 vol %). The core-sheath elastic fibers are used as wearable strain sensors, exhibiting ultra-high stretchability (above 300%), excellent stability (>10 000 cycles), fast response, low hysteresis, and good washability. Furthermore, the piezoresistive core-sheath fiber possesses bending-insensitiveness and negligible torsion-sensitive properties, and the strain sensing performance of piezoresistive fibers maintains a high degree of stability under harsh conditions. On the basis of this high level of performance, the fiber-shaped strain sensor can accurately detect both subtle and large-scale human movements by embedding it in gloves and garments or by directly attaching it to the skin. The current results indicate that the proposed stretchable strain sensor has many potential applications in health monitoring, human-machine interfaces, soft robotics, and wearable electronics.

Keywords: carbon nanotubes; core−sheath fibers; motion detection; wearable strain sensors; wet-spinning.

MeSH terms

  • Elastomers
  • Electric Conductivity
  • Nanocomposites
  • Nanotubes, Carbon
  • Wearable Electronic Devices*

Substances

  • Elastomers
  • Nanotubes, Carbon