Stat5-dependent cardioprotection in late remote ischaemia preconditioning

Cardiovasc Res. 2018 Apr 1;114(5):679-689. doi: 10.1093/cvr/cvy014.

Abstract

Aims: To study the protective effects of late remote ischaemic preconditioning (RIPC) against myocardial ischaemia/reperfusion (I/R) injury and determine whether Stat5 is involved in this protection by using cardiomyocyte-specific Stat5 knockout mice (Stat5-cKO).

Methods and results: Mice were exposed to lower limb RIPC or sham ischaemia. After 24 h, the left anterior descending artery (LAD) was ligated for 30 min, then reperfused for 180 min. The myocardial infarct size (IS), apoptotic rate of cardiomyocytes, and serum myocardial enzymes were measured to evaluate for cardioprotective effects. Heart tissues were harvested to determine the cardiomyocytes' anti-apoptotic and survival signaling. When compared with the Stat5fl/fl mice without RIPC, Stat5fl/fl mice with RIPC (Stat5fl/fl+RIPC + I/R) displayed a decreased myocardial IS/LV (16 ± 1.5 vs. 30.1 ± 3.1%, P < 0.01; IS/ area at risk (AAR), 42.2 ± 3.5 vs. 69.2 ± 4.9%, P < 0.01), a reduced cardiomyocyte apoptotic rate (2.1 ± 0.37 vs. 5.5 ± 0.53%, P < 0.01), and lower creatine kinase (CK), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) levels. To the contrary, the Stat5-cKO mice (Stat5fl/fl; Tnnt2Cremice with Doxycycline treatment for 7 days) did not exhibit any effect of RIPC-induced cardioprotection. Activation of STAT5 protein was significantly higher in the Stat5fl/fl+RIPC + I/R group than in the Stat5fl/fl+I/R group, while there was no significant difference between the Stat5-cKO + RIPC + I/R and the Stat5-cKO + I/R group. Further analyses with heart tissues detected decreased protein expressions of cytochrome c (Cyt c) and cleaved Caspase-3 in the Stat5fl/fl+RIPC + I/R mice, along with increased anti-apoptotic molecules, including B-cell lymphoma-extra large (Bcl-xL) and B-cell lymphoma-2 (Bcl-2); such changes were not noted in the Stat5-cKO + RIPC + I/R mice. Additionally, RIPC increased cardiac hypoxia inducible factor-1 (HIF-1α) and interleukin-10 (IL10) protein levels and caused activation of AKT, phosphatidylinositol 3 kinase (PI3K), and vascular endothelial growth factor in the heart of the Stat5fl/fl mice. However, these changes were completely inhibited by the absence of Stat5.

Conclusions: These results suggest that RIPC-induced late cardioprotection against myocardial I/R injury is Stat5-dependent and is correlated with the activation of anti-apoptotic signaling and cardiomyocyte-survival signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis Regulatory Proteins / metabolism
  • Apoptosis*
  • Creatine Kinase, MB Form / blood
  • Cytochromes c / metabolism
  • Disease Models, Animal
  • Femoral Artery / surgery*
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Interleukin-10 / metabolism
  • Ischemic Preconditioning, Myocardial / methods*
  • L-Lactate Dehydrogenase / blood
  • Ligation
  • Mice, Knockout
  • Myocardial Infarction / genetics
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Infarction / prevention & control*
  • Myocardial Reperfusion Injury / genetics
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Phosphatidylinositol 3-Kinase / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • STAT5 Transcription Factor / deficiency
  • STAT5 Transcription Factor / genetics
  • STAT5 Transcription Factor / metabolism*
  • Signal Transduction
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Apoptosis Regulatory Proteins
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • IL10 protein, mouse
  • STAT5 Transcription Factor
  • Vascular Endothelial Growth Factor A
  • vascular endothelial growth factor A, mouse
  • Interleukin-10
  • Cytochromes c
  • L-Lactate Dehydrogenase
  • Phosphatidylinositol 3-Kinase
  • Proto-Oncogene Proteins c-akt
  • Creatine Kinase, MB Form