Computational drug repositioning using low-rank matrix approximation and randomized algorithms

Bioinformatics. 2018 Jun 1;34(11):1904-1912. doi: 10.1093/bioinformatics/bty013.

Abstract

Motivation: Computational drug repositioning is an important and efficient approach towards identifying novel treatments for diseases in drug discovery. The emergence of large-scale, heterogeneous biological and biomedical datasets has provided an unprecedented opportunity for developing computational drug repositioning methods. The drug repositioning problem can be modeled as a recommendation system that recommends novel treatments based on known drug-disease associations. The formulation under this recommendation system is matrix completion, assuming that the hidden factors contributing to drug-disease associations are highly correlated and thus the corresponding data matrix is low-rank. Under this assumption, the matrix completion algorithm fills out the unknown entries in the drug-disease matrix by constructing a low-rank matrix approximation, where new drug-disease associations having not been validated can be screened.

Results: In this work, we propose a drug repositioning recommendation system (DRRS) to predict novel drug indications by integrating related data sources and validated information of drugs and diseases. Firstly, we construct a heterogeneous drug-disease interaction network by integrating drug-drug, disease-disease and drug-disease networks. The heterogeneous network is represented by a large drug-disease adjacency matrix, whose entries include drug pairs, disease pairs, known drug-disease interaction pairs and unknown drug-disease pairs. Then, we adopt a fast Singular Value Thresholding (SVT) algorithm to complete the drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs. The comprehensive experimental results show that DRRS improves the prediction accuracy compared with the other state-of-the-art approaches. In addition, case studies for several selected drugs further demonstrate the practical usefulness of the proposed method.

Availability and implementation: http://bioinformatics.csu.edu.cn/resources/softs/DrugRepositioning/DRRS/index.html.

Contact: yaohang@cs.odu.edu or jxwang@mail.csu.edu.cn.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Computational Biology / methods*
  • Drug Discovery / methods
  • Drug Repositioning / methods*
  • Humans