Role of the cytochrome P-450/ epoxyeicosatrienoic acids pathway in the pathogenesis of renal dysfunction in cirrhosis

Nephrol Dial Transplant. 2018 Aug 1;33(8):1333-1343. doi: 10.1093/ndt/gfx354.

Abstract

Background: Hepatorenal syndrome (HRS) is a life-threatening complication of advanced liver cirrhosis that is characterized by hemodynamic alterations in the kidney and other vascular beds. Cytochrome P(CYP)-450 enzymes metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acids. These eicosanoids regulate blood pressure, vascular tone and renal tubular sodium transport under both physiological and pathophysiological states.

Methods: Experiments were performed to investigate the role of the CYP system in the pathogenesis of renal dysfunction during cirrhosis. Rats underwent bile duct ligation (BDL) or sham surgery and were studied at 2, 4 and 5 weeks post-surgery. In additional experiments, post-BDL rats were treated with three daily intraperitoneal doses of either the selective epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH) or a vehicle, starting on Day 22 after surgery.

Results: BDL led to progressive renal dysfunction that was associated with reduced renal cortical perfusion but without any overt histologic changes, consistent with HRS. CYP isoform enzyme expression was significantly altered in BDL rats. In the kidney, CYP2C23 expression was upregulated at both the mRNA and protein levels in BDL rats, while CYP2C11 was downregulated. Histologically, the changes in CYP2C23 and CYP2C11 expression were localized to the renal tubules. EET production was increased in the kidneys of BDL rats as assessed by urinary eicosanoid levels. Finally, treatment with the selective epoxygenase inhibitor MSPPOH significantly reduced renal function and renal cortical perfusion in BDL rats, suggesting a homeostatic role for epoxygenase-derived eicosanoids.

Conclusions: The CYP/EET pathway might represent a novel therapeutic target for modulating renal dysfunction in advanced cirrhosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cytochrome P-450 CYP2J2
  • Cytochrome P-450 Enzyme System / metabolism*
  • Hydroxyeicosatetraenoic Acids / metabolism*
  • Kidney Diseases / etiology
  • Kidney Diseases / metabolism
  • Kidney Diseases / pathology*
  • Liver Cirrhosis / complications*
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Signal Transduction

Substances

  • Cyp2c23 protein, rat
  • Hydroxyeicosatetraenoic Acids
  • 20-hydroxy-5,8,11,14-eicosatetraenoic acid
  • Cytochrome P-450 Enzyme System
  • Cytochrome P-450 CYP2J2