Conjugation Chemistry-Dependent T-Cell Activation with Spherical Nucleic Acids

J Am Chem Soc. 2018 Jan 31;140(4):1227-1230. doi: 10.1021/jacs.7b12579. Epub 2018 Jan 22.

Abstract

Spherical nucleic acids (SNAs) can be potent sequence-specific stimulators of antigen presenting cells (APCs). When loaded with peptide antigens, they can be used to activate the immune system to train T-cells to specifically kill cancer cells. Herein, the role of peptide chemical conjugation to the DNA, which is used to load SNAs with antigens via hybridization, is explored in the context of APC activation. Importantly, though the antigen chemistry does not impede TLR-9 regulated APC activation, it significantly augments the downstream T-cell response in terms of both activation and proliferation. A comparison of three linker types, (1) noncleavable, (2) cleavable but nontraceless, and (3) traceless, reveals up to an 8-fold improvement in T-cell proliferation when the traceless linker is used. This work underscores the critical importance of the choice of conjugation chemistry in vaccine development.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antigens / immunology
  • Cell Proliferation
  • DNA / chemistry*
  • Humans
  • Peptides / chemistry*
  • T-Lymphocytes / cytology
  • T-Lymphocytes / immunology*

Substances

  • Antigens
  • Peptides
  • DNA