Carbon nanotube-modified oxidized regenerated cellulose gauzes for hemostatic applications

Carbohydr Polym. 2018 Mar 1:183:246-253. doi: 10.1016/j.carbpol.2017.12.035. Epub 2017 Dec 16.

Abstract

Functionalized carbon nanotubes have recently received interest because of their unique properties, especially in the biomedical field. In this research, unmodified multiwalled carbon nanotubes (MWCNTs), and functionalized carbon nanotubes with amino groups (MWCNTs-NH2) and carboxyl groups (MWCNTs-COOH) were grafted to oxidized regenerated cellulose (ORC) gauze to fabricate novel functionalized ORC, and the performance of the functionalized gauze was investigated. The functionalized ORC was characterized by FT-IR, XPS and SEM, which showed the different kinds of CNTs grafted on its surface. The XPS results demonstrated the successful incorporation of functionalized MWCNTs in the active layer of modified ORC gauze. Meanwhile, the specific surface area of the CNTs modified functionalized ORC gauze was improved in varying degrees, whereas the porosity was slightly decreased. Furthermore, hydrophilicity experiment results presented a significant increment in water uptake of the functionalized CNTs grafted to the surface of the ORC gauze. Results of the hemostatic performance test on rabbit ear artery and liver showed that compared with the original ORC gauze, the bleeding time was significantly reduced when using the functionalized CNTs modified ORC hemostatic gauze. Moreover, the results also showed that the MWCNTs-COOH/ORC functionalized gauze had outstanding hemostatic efficiency.

Keywords: Carbon nanotubes; Functional group; Hemostatic; Oxidized regenerated cellulose.