Monte Carlo calculation of photo-neutron dose produced by circular cones at 18 MV photon beams

Rep Pract Oncol Radiother. 2018 Jan-Feb;23(1):39-46. doi: 10.1016/j.rpor.2017.12.001. Epub 2018 Jan 9.

Abstract

Aim: The aim of this study is to calculate neutron contamination at the presence of circular cones irradiating by 18 MV photons using Monte Carlo code.

Background: Small photon fields are one of the most useful methods in radiotherapy. One of the techniques for shaping small photon beams is applying circular cones made of lead. Using this method in high energy photon due to neutron contamination is a crucial issue.

Materials and methods: Initially, Varian linac producing 18 MV photons was simulated and after validating the code, various circular cones were also simulated. Then, the number of neutrons, neutron equivalent dose and absorbed dose per Gy of photon dose were calculated along the central axis.

Results: Number of neutrons per Gy of photon dose had their maximum value at depth of 2 cm and these values for 5, 10, 15, 20 and 30 mm circular cones were 9.02, 7.76, 7.61, 6.02 and 5.08 (n cm-2 Gy-1), respectively. Neutron equivalent doses per Gy of photon dose had their maximum at the surface of the phantom and these values for mentioned collimators were 1.48, 1.33, 1.31, 1.12 and 1.08 (mSv Gy-1), respectively. Neutron absorbed doses had their maximum at the surface of the phantom and these values for mentioned collimators sizes were 103.74, 99.71, 95.77, 81.46 and 78.20 (μGy/Gy), respectively.

Conclusions: As the field size gets smaller, number of neutrons, equivalent and absorbed dose per Gy of photon increase. Also, neutron equivalent dose and absorbed dose are maximum at the surface of phantom and then these values will be decreased.

Keywords: Circular cones; Monte Carlo; Neutron equivalent dose; Neutron fluence.