Transcription factor Runx1 is pro-neurogenic in adult hippocampal precursor cells

PLoS One. 2018 Jan 11;13(1):e0190789. doi: 10.1371/journal.pone.0190789. eCollection 2018.

Abstract

Transcription factor Runx1 (Runt Related Transcription Factor 1), plays an important role in the differentiation of hematopoetic stem cells, angiogenesis and the development of nociceptive neurons. These known functions have in common that they relate to lineage decisions. We thus asked whether such role might also be found for Runx1 in adult hippocampal neurogenesis as a process, in which such decisions have to be regulated lifelong. Runx1 shows a widespread low expression in the adult mouse brain, not particularly prominent in the hippocampus and the resident neural precursor cells. Isoforms 1 and 2 of Runx1 (but not 3 to 5) driven by the proximal promoter were expressed in hippocampal precursor cells ex vivo, albeit again at very low levels, and were markedly increased after stimulation with TGF-β1. Under differentiation conditions (withdrawal of growth factors) Runx1 became down-regulated. Overexpression of Runx1 in vitro reduced proliferation, increased survival of precursor cells by reducing apoptosis, and increased neuronal differentiation, while slightly reducing dendritic morphology and complexity. Transfection with dominant-negative Runx1 in hippocampal precursor cells in vitro did not result in differences in neurogenesis. Hippocampal expression of Runx1 correlated with adult neurogenesis (precursor cell proliferation) across BXD recombinant strains of mice and covarying transcripts enriched in the GO categories "neural precursor cell proliferation" and "neuron differentiation". Runx1 is thus a plausible candidate gene to be involved in regulating initial differentiation-related steps of adult neurogenesis. It seems, however, that the relative contribution of Runx1 to such effect is complementary and will explain only small parts of the cell-autonomous pro-differentiation effect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing
  • Animals
  • Apoptosis / physiology
  • Cell Survival / physiology
  • Cells, Cultured
  • Core Binding Factor Alpha 2 Subunit / genetics
  • Core Binding Factor Alpha 2 Subunit / metabolism*
  • Dendrites / metabolism
  • Hippocampus / cytology
  • Hippocampus / metabolism*
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Neural Stem Cells / cytology
  • Neural Stem Cells / metabolism*
  • Neurogenesis / physiology*
  • Protein Isoforms
  • RNA, Messenger / metabolism
  • Running / physiology
  • Species Specificity
  • Systems Biology
  • Transcriptome
  • Transfection
  • Transforming Growth Factor beta1 / administration & dosage
  • Transforming Growth Factor beta1 / metabolism
  • Volition

Substances

  • Core Binding Factor Alpha 2 Subunit
  • Protein Isoforms
  • RNA, Messenger
  • Runx1 protein, mouse
  • Transforming Growth Factor beta1

Grants and funding

At the time of the study reported here, HF was a post-doctoral fellow of the Japan Society for the Promotion of Science (JSPS). The funder provided support in the form of the salariy for HF but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of HF are articulated in the ‘author contributions’ section. Evotec AG, the current employer of HF, has no financial or intellectual contribution to the current work.