The glutamine synthetase of Trypanosoma cruzi is required for its resistance to ammonium accumulation and evasion of the parasitophorous vacuole during host-cell infection

PLoS Negl Trop Dis. 2018 Jan 10;12(1):e0006170. doi: 10.1371/journal.pntd.0006170. eCollection 2018 Jan.

Abstract

Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Ammonium Compounds / metabolism*
  • Gene Deletion
  • Genetic Complementation Test
  • Glutamate-Ammonia Ligase / metabolism*
  • Glutamic Acid / metabolism
  • Host-Pathogen Interactions
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics
  • Trypanosoma cruzi / enzymology*
  • Trypanosoma cruzi / growth & development*
  • Vacuoles / parasitology*
  • Virulence Factors / metabolism*

Substances

  • Ammonium Compounds
  • Virulence Factors
  • Glutamic Acid
  • Adenosine Triphosphate
  • Glutamate-Ammonia Ligase

Grants and funding

This work was supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo grant 2016/06034-2 (awarded to AMS), grants 2013/07467-1, 2015/10580-0 and 2016/50050-2 awarded to MCE, 2014/10443-0 awarded to AH (www.fapesp.br); Conselho Nacional de Pesquisas Científicas e Tecnológicas (CNPq) grant 308351/2013-4 (awarded to AMS) and 304329/2015-0 (awarded to MCE) (www.cnpq.br). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.