Molecular docking of selected phytoconstituents with signaling molecules of Ultraviolet-B induced oxidative damage

In Silico Pharmacol. 2017 Dec 2;5(1):17. doi: 10.1007/s40203-017-0035-z. eCollection 2017.

Abstract

Abstract: The signaling molecules TNF-α, AP-1, and NF-κB act to integrate multiple stress signals into a series of diverse antiproliferative responses. Disruption of these processes can promote tumor progression and chemoresistance. Naturally occurring plant derived compounds are considered as attractive candidates for cancer treatment and prevention. Phytoconstituents can control and modify various biological activities by interacting with molecules involved in concerned signaling pathways. The aim of this study was to find binding conformations between phytoconstituents and these signaling molecules responsible for multiple stress signals of UVB induced photodamage. Induced fit docking was carried out for understanding the binding interactions of pantothenic acid (vitamin B5); 3,4,5-trihydroxy benzoic acid (gallic acid); madecassic acid and hexadecanoic acid, ethyl ester (palmitic acid) with TNF-α, AP-1, and NF-κB. Favorable binding conformations between these signaling molecules and the four phytoconstituents were observed. A number of poses were generated to evaluate the binding conformations and common interacting residues between the ligands and proteins. Among them, the best ligands against TNF-α, AP-1, and NF-κB are reported. The present investigation strongly suggests the probable use of these flavonoids for the amelioration of UVB induced photodamage.

Keywords: AP-1; Docking; Flavonoids; NF-κB; Oxidative damage; TNF-α.