An electronic device based on gold nanoparticles and tetraruthenated porphyrin as an electrochemical sensor for catechol

R Soc Open Sci. 2017 Dec 20;4(12):170675. doi: 10.1098/rsos.170675. eCollection 2017 Dec.

Abstract

The aim of this study was to obtain an electrochemical device between the electrostatic interaction of the electropolymerized porphyrin {CoTPyP[RuCl3(dppb)]4}, where TPyP = 5,10,15, 20-tetrapyridilphorphyrin and dppb = 1,4-bis(diphenylphosphino)butane, and gold nanoparticles (AuNPsn-), to be used as a voltammetric sensor to determine catechol (CC). The modified electrode, labelled as [(CoTPRu4)n8+-BE]/AuNPsn- {where BE = bare electrode = glassy carbon electrode (GCE) or indium tin oxide (ITO)}, was made layer-by-layer. Initially, a cationic polymeric film was generated by electropolymerization of the {CoTPyP[RuCl3(dppb)]4} onto the surface of the bare electrode to produce an intermediary electrode [(CoTPRu4)n8+-BE]. Making the final electronic device also involves coating the electrode [(CoTPRu4)n8+-BE] using a colloidal suspension of AuNPsn- by electrostatic interaction between the species. Therefore, a bilayer labelled as [(CoTPRu4)n8+-BE]/AuNPsn- was produced and used as an electrochemical sensor for CC determination. The electrochemical behaviour of CC was investigated using cyclic voltammetry at [(CoTPRu4)n8+-GCE]/AuNPsn- electrode. Compared to the GCE, the [(CoTPRu4)n8+-GCE]/AuNPsn- showed higher electrocatalytic activity towards the oxidation of CC. Under the optimized conditions, the calibration curves for CC were 21-1357 µmol l-1 with a high sensitivity of 108 µA µmol l-1 cm-2. The detection limit was 1.4 µmol l-1.

Keywords: cobalt porphyrin; dihydroxybenzene; electrode modified; electropolymerization.

Associated data

  • figshare/10.6084/m9.figshare.5514994